Up-regulation of endothelial stretch-activated cation channels by fluid shear stress.

نویسندگان

  • Susanne Brakemeier
  • Ines Eichler
  • Hartmut Hopp
  • Ralf Köhler
  • Joachim Hoyer
چکیده

OBJECTIVE Stretch-activated cation channels (SAC) have been suggested to act as endothelial mechanosensors for hemodynamic forces. Ca(2+) influx through SAC could induce an intracellular Ca(2+) signal stimulating Ca(2+)-dependent synthesis of vasodilators like NO, prostacyclin, or EDHF. In the present study we tested whether laminar shear stress (LSS) regulates SAC function. METHODS Electrophysiological properties of SAC were investigated in human umbilical vein endothelial cells (HUVEC) subjected to defined levels of LSS in a flow-cone apparatus. RESULTS In HUVEC, we identified a Ca(2+) permeable SAC that was activated by membrane stretch. Single-channel current densities of SAC in cell-attached patches were significantly increased in HUVEC exposed to an LSS of 5 dyn/cm(2) for 4 h (1.15+/-0.17 SAC/patch) compared to HUVEC kept in stationary culture (0.46+/-0.07 SAC/patch). Exposure of HUVEC to a higher LSS of 15 dyn/cm(2) for 4 h induced similar up-regulation of SAC (1.27+/-0.21 SAC/patch). After 24 h exposure to LSS of 15 dyn/cm(2), single-channel current densities of SAC remained up-regulated (1.07+/-0.18 SAC/patch) compared to controls. In addition, stretch-sensitivity of SAC (channel activity NP(o) at -30 mmHg) significantly increased after 2 h of exposure to LSS of 5 and 15 dyn/cm(2) and remained up-regulated after 24 h. Inhibition of protein kinases and tyrosine kinases by H7 and genistein, respectively, prevented LSS-induced alteration of SAC function. CONCLUSION Single-channel current density and mechanosensitivity of SAC in HUVEC is up-regulated by LSS. Up-regulation of SAC function leads to enhanced mechanosensitive Ca(2+) influx, and represents a novel adaptive mechanism of the endothelium in the presence of altered hemodynamic forces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of mechanical forces on signal transduction and gene expression in endothelial cells.

Fluid shear stress and circumferential stretch play important roles in maintaining the homeostasis of the blood vessel, and they can also be pathophysiological factors in cardiovascular diseases such as atherosclerosis and hypertension. The uses of flow channels and stretch devices as in vitro models have helped to elucidate the mechanisms of signal transduction and gene expression in cultured ...

متن کامل

Ion channels and their functional role in vascular endothelium.

Endothelial cells (EC) form a unique signal-transducing surface in the vascular system. The abundance of ion channels in the plasma membrane of these nonexcitable cells has raised questions about their functional role. This review presents evidence for the involvement of ion channels in endothelial cell functions controlled by intracellular Ca(2+) signals, such as the production and release of ...

متن کامل

Shear stress-induced up-regulation of the intermediate-conductance Ca(2+)-activated K(+) channel in human endothelium.

OBJECTIVE Wall shear stress associated with blood flow is a major stimuli for generation of endothelial vasodilating and antithrombotic factors and it also regulates endothelial gene expression. Activation of endothelial intermediate-conductance Ca(2+)-activated K(+) channels (IK(Ca)) is important for the control of endothelial function by inducing cell hyperpolarization and thus generation of ...

متن کامل

Differential membrane potential and ion current responses to different types of shear stress in vascular endothelial cells.

Vascular endothelial cells (ECs) distinguish among and respond differently to different types of fluid mechanical shear stress. Elucidating the mechanisms governing this differential responsiveness is the key to understanding why early atherosclerotic lesions localize preferentially in arterial regions exposed to low and/or oscillatory flow. An early and very rapid endothelial response to flow ...

متن کامل

Ion Channels in Endothelial Responses to Fluid Shear Stress.

Fluid shear stress is an important environmental cue that governs vascular physiology and pathology, but the molecular mechanisms that mediate endothelial responses to flow are only partially understood. Gating of ion channels by flow is one mechanism that may underlie many of the known responses. Here, we review the literature on endothelial ion channels whose activity is modulated by flow wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cardiovascular research

دوره 53 1  شماره 

صفحات  -

تاریخ انتشار 2002